Noise Analysis in Biochemical Complex Formation

Author:

Xu Zikai,Ghusinga Khem Raj,Singh Abhyudai

Abstract

AbstractSeveral biological functions are carried out via complexes that are formed via multimerization of either a single species (homomers) or multiple species (heteromers). Given functional relevance of these complexes, it is arguably desired to maintain their level at a set point and minimize fluctuations around it. Here we consider two simple models of complex formation – one for homomer and another for heteromer of two species – and analyze how important model parameters affect the noise in complex level. In particular, we study effects of (i) sensitivity of the complex formation rate with respect to constituting species’ abundance, and (ii) relative stability of the complex as compared with that of the constituents. By employing an approximate moment analysis, we find that for a given steady state level, there is an optimal sensitivity that minimizes noise (quantified by fano-factor; variance/mean) in the complex level. Furthermore, the noise becomes smaller if the complex is less stable than its constituents. Finally, for the heteromer case, our findings show that noise is enhanced if the complex is comparatively more sensitive to one constituent. We briefly discuss implications of our result for general complex formation processes.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3