Characterisation of AmpC Hyper-Producing Escherichia coli from Humans and Dairy Farms Collected in Parallel in the Same Geographical Region

Author:

Alzayn Maryam,Findlay Jacqueline,Schubert Hannah,Mounsey Oliver,Gould Virginia C.,Heesom Kate J.,Turner Katy M.,Barrett David C.,Reyher Kristen K.,Avison Matthew B.

Abstract

AbstractObjectivesTo characterise putative AmpC hyper-producing 3rd generation cephalosporin-resistant E. coli from dairy farms and their phylogenetic relationships as well as to identify risk factors for their presence; to assess evidence for their zoonotic transmission into the local human populationMethodsProteomics was used to explain differences in antimicrobial susceptibility. Whole genome sequencing allowed phylogenetic analysis. Multilevel, multivariable logistic regression modelling was used to identify risk factors.ResultsIncreased use of amoxicillin-clavulanate was associated with an increased risk of finding AmpC hyper-producers on farms. Expansion of cephalosporin resistance in AmpC hyper-producers was seen in farm isolates with marR mutations (conferring cefoperazone resistance) or when AmpC was mutated (conferring 4th generation cephalosporin and cefoperazone resistance). Phylogenetic analysis confirmed the dominance of ST88 amongst farm AmpC hyper-producers but there was no evidence for acquisition of farm isolates by members of the local human population.ConclusionsIn this two-year surveillance study of 53 dairy farms, AmpC hyper-production was the cause of cefotaxime resistance in 46.2% of E. coli. There was evidence of recent farm-to-farm transmission and of adaptive mutations to expand resistance. Whilst there was no evidence of isolates entering the local human population, efforts to reduce 3rd generation cephalosporin resistance on dairy farms must address the high prevalence of AmpC hyper-producers. The finding that amoxicillin-clavulanate use was associated with increased risk of finding AmpC hyper-producers is important because this is not currently categorised as a highest-priority critically important antimicrobial and so is not currently targeted for specific usage restrictions in the UK.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3