Reverse GWAS: Using Genetics to Identify and Model Phenotypic Subtypes

Author:

Dahl Andy,Cai Na,Ko Arthur,Laakso Markku,Pajukanta Päivi,Flint Jonathan,Zaitlen Noah

Abstract

AbstractRecent and classical work has revealed biologically and medically significant subtypes in complex diseases and traits. However, relevant subtypes are often unknown, unmeasured, or actively debated, making automatic statistical approaches to subtype definition particularly valuable. We propose reverse GWAS (RGWAS) to identify and validate subtypes using genetics and multiple traits: while GWAS seeks the genetic basis of a given trait, RGWAS seeks to define trait subtypes with distinct genetic bases. Unlike existing approaches relying on off-the-shelf clustering methods, RGWAS uses a bespoke decomposition, MFMR, to model covariates, binary traits, and population structure. We use extensive simulations to show these features can be crucial for power and calibration. We validate RGWAS in practice by recovering known stress subtypes in major depressive disorder. We then show the utility of RGWAS by identifying three novel subtypes of metabolic traits. We biologically validate these metabolic subtypes with SNP-level tests and a novel polygenic test: the former recover known metabolic GxE SNPs; the latter suggests genetic heterogeneity may explain substantial missing heritability. Crucially, statins, which are widely prescribed and theorized to increase diabetes risk, have opposing effects on blood glucose across metabolic subtypes, suggesting potential have potential translational value.Author summaryComplex diseases depend on interactions between many known and unknown genetic and environmental factors. However, most studies aggregate these strata and test for associations on average across samples, though biological factors and medical interventions can have dramatically different effects on different people. Further, more-sophisticated models are often infeasible because relevant sources of heterogeneity are not generally known a priori. We introduce Reverse GWAS to simultaneously split samples into homogeneoues subtypes and to learn differences in genetic or treatment effects between subtypes. Unlike existing approaches to computational subtype identification using high-dimensional trait data, RGWAS accounts for covariates, binary disease traits and, especially, population structure; these features are each invaluable in extensive simulations. We validate RGWAS by recovering known genetic subtypes of major depression. We demonstrate RGWAS is practically useful in a metabolic study, finding three novel subtypes with both SNP- and polygenic-level heterogeneity. Importantly, RGWAS can uncover differential treatment response: for example, we show that statin, a common drug and potential type 2 diabetes risk factor, may have opposing subtype-specific effects on blood glucose.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3