Exploratory re-encoding of Yellow Fever Virus genome: new insights for the design of live-attenuated viruses

Author:

Klitting R.,Riziki T.,Moureau G.,Piorkowski G.,Gould E. A.,de Lamballerie X.

Abstract

AbstractVirus attenuation by genome re-encoding is a pioneering approach for generating effective live-attenuated vaccine candidates. Its core principle is to introduce a large number of synonymous substitutions into the viral genome to produce stable attenuation of the targeted virus. Introduction of large numbers of mutations has also been shown to maintain stability of the attenuated phenotype by lowering the risk of reversion and recombination of re-encoded genomes. Identifying mutations with low fitness cost is pivotal as this increases the number that can be introduced and generates more stable and attenuated viruses. Here, we sought to identify mutations with low deleterious impact on thein vivoreplication and virulence of yellow fever virus (YFV). Following comparative bioinformatic analyses of flaviviral genomes, we categorized synonymous transition mutations according to their impact on CpG/UpA composition and secondary RNA structures. We then designed 17 re-encoded viruses with 100-400 synonymous mutations in the NS2A-to-NS4B coding region of YFVAsibiandAp7M(hamster-adapted) genomes. Each virus contained a panel of synonymous mutations designed according to the above categorisation criteria. The replication and fitness characteristics of parent and re-encoded viruses were comparedin vitrousing cell culture competition experiments.In vivolaboratory hamster models were also used to compare relative virulence and immunogenicity characteristics. Most of the re-encoded strains showed no decrease in replicative fitnessin vitro. However, they showed reduced virulence and, in some instances, decreased replicative fitnessin vivo. Importantly, the most attenuated of the re-encoded strains induced robust, protective immunity in hamsters following challenge withAp7M, a virulent virus. Overall, the introduction of transitions with no or a marginal increase in the number of CpG/UpA dinucleotides had the mildest impact on YFV replication and virulencein vivo. Thus, this strategy can be incorporated in procedures for the finely tuned creation of substantially re-encoded viral genomes.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3