Non Hybrid Long Read Consensus Using Local De Bruijn Graph Assembly

Author:

Tischler German,Myers Eugene W.

Abstract

AbstractWhile second generation sequencing led to a vast increase in sequenced data, the shorter reads which came with it made assembly a much harder task and for some regions impossible with only short read data. This changed again with the advent of third generation long read sequencers. The length of the long reads allows a much better resolution of repetitive regions, their high error rate however is a major challenge. Using the data successfully requires to remove most of the sequencing errors. The first hybrid correction methods used low noise second generation data to correct third generation data, but this approach has issues when it is unclear where to place the short reads due to repeats and also because second generation sequencers fail to sequence some regions which third generation sequencers work on. Later non hybrid methods appeared. We present a new method for non hybrid long read error correction based on De Bruijn graph assembly of short windows of long reads with subsequent combination of these correct windows to corrected long reads. Our experiments show that this method yields a better correction than other state of the art non hybrid correction approaches.

Publisher

Cold Spring Harbor Laboratory

Reference28 articles.

1. Paci cBiosciences DevNet E. coli long read data. https://github.com/PacificBiosciences/DevNet/wiki/E-coli-Bacterial-Assembly.

2. Paci cBiosciencesDevNetSaccharomycescerevisiaelongread data. https://github.com/PacificBiosciences/DevNet/wiki/Saccharomyces-cerevisiae-W303-Assembly-Contigs.

3. The genome sequence of drosophila melanogaster;Science,2000

4. Perceptions and Experiences of Research Participants on Gender-Based Violence Community Based Survey: Implications for Ethical Guidelines

5. Assembling large genomes with single-molecule sequencing and locality-sensitive hashing

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3