RIFRAF: a frame-resolving consensus algorithm

Author:

Eren Kemal,Murrell Ben

Abstract

AbstractMotivationProtein coding genes can be studied using long-read next generation sequencing. However, high rates of indel sequencing errors are problematic, corrupting the reading frame. Even the consensus of multiple independent sequence reads retains indel errors. To solve this problem, we introduce RIFRAF, a sequence consensus algorithm that takes a set of error-prone reads and a reference sequence and infers an accurate in-frame consensus. RIFRAF uses a novel structure, analogous to a two-layer hidden Markov model: the consensus is optimized to maximize alignment scores with both the set of noisy reads and with a reference. The template-to-reads component of the model encodes the preponderance of indels, and is sensitive to the per-base quality scores, giving greater weight to more accurate bases. The reference-to-template component of the model penalizes frame-destroying indels. A local search algorithm proceeds in stages to find the best consensus sequence for both objectives.ResultsUsing Pacific Biosciences SMRT sequences of NL4-3 env, we compare our approach to other consensus and frame correction methods. RIFRAF consistently finds a consensus sequence that is more accurate and in-frame, especially with small numbers of reads. It was able to perfectly reconstruct over 80% of consensus sequences from as few as three reads, whereas the best alternative required twice as many. RIFRAF is able to achieve these results and keep the consensus in-frame even with a distantly related reference sequence. Moreover, unlike other frame correction methods, RIFRAF can detect and keep true indels while removing erroneous ones.AvailabilityRIFRAF is implemented in Julia, and source code is publicly available at https://github.com/MurrellGroup/Rifraf.jlContactbmurrell@ucsd.edu

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3