Biomechanical Analysis of Angular Motion in Association with Bilateral Semicircular Canal Function

Author:

Shen ShuangORCID,Zhao Fei,Chen Zhaoyue,Zheng Qingyin,Yu Shen,Cao Tongtao,Ma Peng

Abstract

AbstractThe aim of this study was to develop a finite element (FE) model of bilateral human semicircular canals (SCCs) in order to simulate and analyze the complex fluid-structural interaction between the endolymph and cupulae by calculating the degree of cupular expansion and the cupular deflection. The results showed that cupular deflection responses were consistent with Ewald’s II law, whereas each pair of bilateral cupulae simultaneously expanded or compressed to the same degree. In addition, both the degree of cupular expansion and cupular deflection can be expressed as the solution of forced oscillation during head sinusoidal rotation, and the amplitude of cupular expansion was approximately two times greater than that of cupular deflection. Regarding the amplitude-frequency and phase-frequency characteristics, the amplitude ratios among the horizontal semicircular canal (HC) cupular expansion, the anterior semicircular canal (AC) cupular expansion, and the posterior semicircular canal (PC) cupular expansion was constant at 1:0.82:1.62, and the phase differences among them were constant at 0 or 180 degrees at the frequencies of 0.5 to 6 Hz. However, both the amplitude ratio and the phase differencies of the cupular deflection incresed nonlinearly with the increase of frequency and tended to be constant at the frequency band between 2 and 6 Hz. The results indicate that the responses of cupular expansion might only be related to the mass and rigidity of three cupulae and the endolymph, but the responses of cupular deflection are related to the mass, rigidity, or damping of them, and these physical properties would be affected by vestibular dysfunction. Therefore, both the degree of cupular expansion and cupular deflection should be considered important mechanical variables for induced neural signals. Such a numerical model can be further built to provide a useful theoretical approach for exploring the biomechanical nature underlying vestibular dysfunction.Statement of significanceBy taking the advantage of the torsional pendulum model and the FE model, a healthy human vestibular SCCs was developed to investigate the angular motion in association with SCC function. As a result, the responses of cupular expansion and deflection during head horizontal sinusoidal rotation were analyzed for the first time, showing quantitative correlation to the eye movement due to the vestibular ocular reflex (VOR) pathway. These responses play important roles in the cupular mechano-electrical transduction process. The significant outcome derived from this study provides a useful theoretical approach for further exploring the biomechanical nature underlying vestibular dysfunction.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3