Imaging forward and Reverse Traveling Waves in the Cochlea

Author:

Zosuls A.,Rupprecht L. C.,Mountain D. C.

Abstract

AbstractThe presence of forward and reverse traveling wave modes on the basilar membrane has important implications to how the cochlea functions as a filter, transducer, and amplifier of sound. The presence and parameters of traveling waves are of particular importance to interpreting otoacoustic emissions (OAE). OAE are vibrations that propagate out of the cochlea and are measureable as sounds emitted from the tympanic membrane. The interpretation of OAE is a powerful research and clinical diagnostic tool, but OAE use has not reached full potential because the mechanisms of their generation and propagation are not fully understood. Of particular interest and deliberation is whether the emissions propagate as a fluid compression wave or a structural traveling wave. In this study a mechanical probe was used to simulate an OAE generation site and optical imaging was used to measure displacement of the inner hair cell stereocilia of the gerbil cochlea. Inner hair cell stereocilia displacement measurements were made in the radial dimension as a function of their longitudinal location along the length of the basilar membrane in response to a transverse stimulation from the probe. The analysis of the spatial frequency response of the inner hair cell stereocilia at frequencies near the characteristic frequency (CF) of the measurement location suggests that a traveling wave propagates in the cochlear partition simultaneously basal and apical (forward and reverse) from the probe location. The traveling wave velocity was estimated to be 5.9m/s - 8m/s in the base (near CF of 29kHz - 40kHz) and 1.9m/s - 2.4m/s in the second turn (near CF of 2kHz - 3kHz). These results suggest that the cochlear partition is capable of supporting both forward and reverse traveling wave modes generated by a source driving the basilar membrane. This suggests that traveling waves in the cochlear partition contribute to OAE propagation.

Publisher

Cold Spring Harbor Laboratory

Reference47 articles.

1. Helmholtz, H.L.F. Von. 1954. On the sensations of tone as a physiological basis for the theory of music. .

2. Measurement of basilar membrane motion in the guinea pig using the Mössbauer technique

3. Stimulated acoustic emissions from within the human auditory system

4. Evoked otoacoustic emissions arise by two fundamentally different mechanisms: A taxonomy for mammalian OAEs

5. von Bekesy, G. 1960. Eperiments in Hearing. New York: Mc Graw Hill.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3