Systematic re-annotation of 191 genes associated with early-onset epilepsy unmasks de novo variants linked to Dravet syndrome in novel SCN1A exons

Author:

Steward Charles A.,Roovers Jolien,Suner Marie-Marthe,Gonzalez Jose M.,Uszczynska-Ratajczak Barbara,Pervouchine Dmitri,Fitzgerald Stephen,Viola Margarida,Stamberger Hannah,Hamdan Fadi F.,Ceulemans Berten,Leroy Patricia,Nava Caroline,Lepine Anne,Tapanari Electra,Keiller Don,Abbs Stephen,Sanchis-Juan Alba,Grozeva Detelina,Rogers Anthony S.,Wright James,Choudhary Jyoti,Diekhans Mark,Guigó Roderic,Petryszak Robert,Minassian Berge A.,Cavalleri Gianpiero,Vitsios Dimitrios,Petrovski Slavé,Harrow Jennifer,Flicek Paul,Raymond F. Lucy,Lench Nicholas J.,De Jonghe Peter,Mudge Jonathan M.,Weckhuysen Sarah,Sisodiya Sanjay M.,Frankish Adam

Abstract

AbstractThe early infantile epileptic encephalopathies (EIEE) are a group of rare, severe neurodevelopmental disorders, where even the most thorough sequencing studies leave 60-65% of patients without a molecular diagnosis. Here, we explore the incompleteness of transcript models used for exome and genome analysis as one potential explanation for lack of current diagnoses. Therefore, we have updated the GENCODE gene annotation for 191 epilepsy-associated genes, using human brain-derived transcriptomic libraries and other data to build 3,550 novel putative transcript models. The extended transcriptional footprint of these genes allowed for 294 intronic or intergenic variants, found in human mutation databases, to be reclassified as exonic, while a further 70 intronic variants were reclassified as splice-site proximal. Using SCN1A as a case study due to its close phenotype/genotype correlation with Dravet syndrome, we screened 122 people with Dravet syndrome, or a similar phenotype, with a panel of novel exon sequences representing eight established genes and identified two de novo SCN1A variants that now, through improved gene annotation can be ascribed to residing among novel exons. These two (from 122 screened patients, 1.6%) new molecular diagnoses carry significant clinical implications. Furthermore, we identified a previously-classified SCN1A intronic Dravet-associated variant that now lies within a deeply conserved novel exon. Our findings illustrate the potential gains of thorough gene annotation in improving diagnostic yields for genetic disorders. We would expect to find new molecular diagnoses in our 191 genes that were originally suspected by clinicians for patients, with a negative diagnosis.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3