Electrophysiological evidence for impaired auditory sensory memory in Cystinosis despite typical sensory processing: An MMN investigation

Author:

Francisco Ana A.,Foxe John J.,Horsthuis Douwe J.,Molholm Sophie

Abstract

AbstractCystinosis, a genetic rare disease characterized by cystine accumulation and crystallization, results in significant damage in a multitude of tissues and organs, such as the kidney, thyroid, eye, and brain. While Cystinosis’ impact on brain function is relatively mild compared to its effects on other organs, the increased lifespan of this population and thus potential for productive societal contributions have led to increased interest on the effects on brain function. Nevertheless, and despite some evidence of structural brain differences, the neural impact of the mutation is still not well characterized.Here, using a passive duration oddball paradigm (with different stimulus onset asynchronies (SOAs), representing different levels of demand on memory) and high-density electrophysiology, we tested basic auditory processing in a group of 22 children and adolescents diagnosed with Cystinosis (age range: 6-17 years old) and in neurotypical age-matched controls (N=24). We examined whether the N1 and mismatch negativity (MMN) significantly differed between the groups and if those neural measures correlated with verbal and non-verbal IQ. Individuals diagnosed with Cystinosis presented similar N1 responses to their age-matched peers, indicating typical basic auditory processing in this population. However, whereas both groups showed similar MMN responses for the shortest (450ms) SOA, suggesting intact change detection and sensory memory, individuals diagnosed with Cystinosis presented clearly reduced responses for the longer (900ms and 1800ms) SOAs. This could indicate reduced duration auditory sensory memory traces, and thus sensory memory impairment, in children and adolescents diagnosed with Cystinosis. Future work addressing other aspects of sensory and working memory is needed to understand the underlying bases of the differences described here, and their implication for higher order processing.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3