Live imaging of Aiptasia larvae, a model system for studying coral bleaching, using a simple microfluidic device

Author:

Treuren Will Van,Brower Kara K.,Labanieh Louai,Hunt Daniel,Lensch Sarah,Cruz Bianca,Cartwright Heather N.,Tran Cawa,Fordyce Polly M.ORCID

Abstract

AbstractCoral reefs, and their associated diverse ecosystems, are of enormous ecological importance. In recent years, coral health has been severely impacted by environmental stressors brought on by human activity and climate change, threatening the extinction of several major reef ecosystems. Reef damage is mediated by a process called ‘coral bleaching’ where corals, sea anemones, and other cnidarians lose their photosynthetic algal symbionts (genus Symbiodinium) upon stress induction, resulting in drastically decreased host energy harvest and, ultimately, coral death. The mechanism by which this critical cnidarian-algal symbiosis is lost remains poorly understood. Here, we report ‘Traptasia’, a simple microfluidic device with multiple traps designed to isolate and image individual live larvae of Aiptasia, a sea anemone model organism, and their algal symbionts over extended time courses. Aiptasia larvae are ~100 μm in length, deformable, and highly motile, posing particular challenges for long-term imaging. Using a trap design optimized via fluid flow simulations and polymer bead loading tests, we trapped Aiptasia larvae containing algal symbionts and demonstrated stable imaging for >10 hours. We visualized algal migration within Aiptasia larvae and observed algal expulsion under an environmental stressor. To our knowledge, this device is the first to enable live imaging of cnidarian larvae and their algal symbionts and, in further implementation, could provide important insights into the cellular mechanisms of coral bleaching under different environmental stressors. The device is simple to use, requires minimal external equipment and no specialized training to operate, and can easily be adapted to study a variety of large, motile organisms.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3