Abstract
AbstractDespite the large diversity of the proteins involved in cellular signaling, many intracellular signaling pathways converge onto one of only dozens of small molecule second messengers. Cyclic adenosine monophosphate (cAMP), one of these second messengers, is known to regulate activity of both Protein Kinase A (PKA) and the Extracellular Regulated Kinase (ERK), among other signaling pathways. In its role as an important cellular signaling hub, intracellular cAMP concentration has long been assumed to monotonically regulate its known effectors.Using an optogenetictool that can introduce precise amounts of cAMP in MDCKI cells, we identify genes whose expression changes biphasically with monotonically increasing cAMP levels. By examining the behavior of PKA and ERK1/2 in the same dose regime, we find that these kinases also respond biphasically to increasing cAMP levels, with opposite phases. We reveal that this behavior results from an elaborate integration by PKA of many cellular signals triggered by cAMP. In addition to the direct activation of PKA, cAMP also modulates the activity of p38 and ERK, which then converge to inhibit PKA. These interactions and their ensuing biphasic PKA profile have important physiological repercussions, influencing the ability of MDCKI cells to proliferate and form acini. Our data, supported by computational modeling, synthesize a set of network interconnections involving PKA and other important signaling pathways into a model that demonstrates how cells can capitalize on signal integration to create a diverse set of responses to cAMP concentration and produce complex input-output relationships.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献