Markov chain models of cancer metastasis

Author:

Mason Jeremy,Newton Paul K.

Abstract

Abstract.We describe the use of Markov chain models for the purpose of quantitative forecasting of metastatic cancer progression. Each site (node) in the Markov network (directed graph) is an organ site where a secondary tumor could develop with some probability. The Markov matrix is an N x N matrix where each entry represents a transition probability of the disease progressing from one site to another during the course of the disease. The initial state-vector has a 1 at the position corresponding to the primary tumor, and 0s elsewhere (no initial metastases). The spread of the disease to other sites (metastases) is modeled as a directed random walk on the Markov network, moving from site to site with the estimated transition probabilities obtained from longitudinal data. The stochastic model produces probabilistic predictions of the likelihood of each metastatic pathway and corresponding time sequences obtained from computer Monte Carlo simulations. The main challenge is to empirically estimate the N^2 transition probabilities in the Markov matrix using appropriate longitudinal data.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Markov chain quasi-Monte Carlo method for forecasting fire hotspots in Sarawak, Malaysia;Environmental Science and Pollution Research;2024-07-22

2. Statistics: The Background and the Basis;Forum for Interdisciplinary Mathematics;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3