Human brain-derived Aβ oligomers bind to synapses and disrupt synaptic activity in a manner that requires APP

Author:

Wang Zemin,Jackson Rosemary J.,Hong Wei,Walter Taylor M.,Moreno Arturo,Liu Wen,Li Shaomin,Frosch Matthew P.,Slutsky Inna,Young-Pearse Tracy,Spires-Jones Tara L.,Walsh Dominic M.ORCID

Abstract

AbstractCompelling genetic evidence links the amyloid precursor protein (APP) to Alzheimer’s disease (AD), and several theories have been advanced to explain the involvement of APP in AD. A leading hypothesis proposes that a small amphipathic fragment of APP, the amyloid β-protein (Aβ), self-associates to form soluble aggregates which impair synaptic and network activity. Here, we report on the plasticity-disrupting effects of Aβ isolated from AD brain and the requirement of APP for these effects. We show that Aβ-containing AD brain extracts block hippocampal long-term potentiation (LTP), augment glutamate release probability and disrupt the excitation/inhibition balance. Notably, these effects are associated with Aβ localizing to synapses, and genetic ablation of APP prevents both Aβ binding and Aβ-mediated synaptic dysfunctions. These findings indicate a role for APP in AD pathogenesis beyond the generation of Aβ and suggest modulation of APP expression as a therapy for AD.AcknowledgmentsWe thank Dr. Tiernan T. O’Malley for useful discussions and technical advice. This work was supported by grants to DMW from the National Institutes of Health (AG046275), Bright Focus, and the United States-Israel Binational Science Foundation (2013244, DMW and IS); grants to TSJ from Alzheimer’s Research UK and the Scottish Government (ARUK-SPG2013-1), Wellcome Trust-University of Edinburgh Institutional Strategic Support funds, and the H2020 European Research Council (ALZSYN); and to the Massachusetts Alzheimer’s Disease Research Center (AG05134).

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3