Mechanisms of activation and desensitization of full-length glycine receptor in membranes

Author:

Kumar ArvindORCID,Basak SandipORCID,Rao Shanlin,Gicheru Yvonne,Mayer Megan L.,Sansom Mark S.PORCID,Chakrapani SudhaORCID

Abstract

AbstractGlycinergic synapses play a central role in motor control and pain processing in the central nervous system. Glycine receptors (GlyR) are key players in mediating fast inhibitory neurotransmission at these synapses. While previous high-resolution structural studies have provided insights into the molecular architecture of GlyR, several mechanistic questions pertaining to channel function are still unknown. Here, we present Cryo-EM structures of the full-length GlyR protein reconstituted into lipid nanodiscs that are captured in the unliganded (closed) and glycine-bound (open and desensitized) conformations. A comparison of the three states reveals global conformational changes underlying GlyR channel gating. The functional state assignments were validated by molecular dynamics simulations of the structures incorporated in a lipid bilayer. Observed permeation events are in agreement with the anion selectivity of the channel and the reported single-channel conductance of GlyR. These studies establish the structural basis for gating, selectivity, and single-channel conductance of GlyR in a physiological environment.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3