Decreasing Serine Levels During Growth Transition Triggers Biofilm Formation inBacillus subtilis

Author:

Greenwich Jennifer,Reverdy Alicyn,Gozzi Kevin,Cecco Grace Di,Tashjian Tommy,Godoy-Carter Veronica,Chai Yunrong

Abstract

ABSTRACTBiofilm development inBacillus subtilisis regulated at multiple levels. While a number of known signals that trigger biofilm formation do so through the activation of one or more sensory histidine kinases, it was recently discovered that biofilm activation is also coordinated by sensing intracellular metabolic signals, including serine starvation. Serine starvation causes ribosomes to pause on specific serine codons, leading to a decrease in the translation rate ofsinR, which encodes a master repressor for biofilm matrix genes, and ultimately biofilm induction. How serine levels change in different growth stages, howB. subtilisregulates intracellular serine levels in response to metabolic status, and how serine starvation triggers ribosomes to pause on selective serine codons remain unknown. Here we show that serine levels decrease as cells enter stationary phase and that unlike most other amino acid biosynthesis genes, expression of serine biosynthesis genes decreases upon the transition into stationary phase. Deletion of the gene for a serine deaminase responsible for converting serine to pyruvate led to a delay in biofilm formation, further supporting the idea that serine levels are a critical intracellular signal for biofilm activation. Finally, we show that levels of all five serine tRNA isoacceptors are decreased in stationary phase compared to exponential phase. Interestingly, the three isoacceptors recognizing UCN serine codons are reduced to a much greater extent than the two that recognize AGC and AGU serine codons. Our findings provide evidence for a link between serine homeostasis and biofilm development inB. subtilis.IMPORTANCEInBacillus subtilis, biofilm formation is triggered in response to various environmental and cellular signals. It was previously proposed that serine limitation acts as a proxy for nutrient status and triggers biofilm formation at the onset of biofilm entry through a novel signaling mechanism caused by global ribosome pausing on selective serine codons. In this study, we revealed that serine levels decrease at the biofilm entry due to catabolite control and a shunt mechanism. We also show that levels of five serine tRNA isoacceptors are differentially decreased in stationary phase compared to exponential phase; three isoacceptors recognizing UCN serine codons are reduced much greater than the two recognizing AGC and AGU codons. This indicates a possible mechanism for selective ribosome pausing.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3