Identifying Candidate Causal Variants Responsible for Altered Activity of the ABCB1 Multidrug Resistance Gene

Author:

Soranzo Nicole,Cavalleri Gianpiero L.,Weale Michael E.,Wood Nicholas W.,Depondt Chantal,Marguerie Richard,Sisodiya Sanjay M.,Goldstein David B.

Abstract

The difficulty of fine localizing the polymorphisms responsible for genotype-phenotype correlations is emerging as an important constraint in the implementation and interpretation of genetic association studies, and calls for the definition of protocols for the follow-up of associated variants. One recent example is the 3435C>T polymorphism in the multidrug transporter gene ABCB1, associated with protein expression and activity, and with several clinical conditions. Available data suggest that 3435C>T may not directly cause altered transport activity, but may be associated with one or more causal variants in the poorly characterized stretch of linkage disequilibrium (LD) surrounding it. Here we describe a strategy for the follow-up of reported associations, including a Bayesian formalization of the associated interval concept previously described by Goldstein. We focus on the region of high LD around 3435C>T to compile an exhaustive list of variants by (1) using a relatively coarse set of marker typings to assess the pattern of LD, and (2) resequencing derived and ancestral chromosomes at 3435C>T through the associated interval. We identified three intronic sites that are strongly associated with the 3435C>T polymorphism. One of them is associated with multidrug resistance in patients with epilepsy (χ2 = 3.78, P = 0.052), and sits within a stretch of significant evolutionary conservation. We argue that these variants represent additional candidates for influencing multidrug resistance due to P-glycoprotein activity, with the IVS 26+80 T>C being the best candidate among the three intronic sites. Finally, we describe a set of six haplotype tagging single-nucleotide polymorphisms that represent common ABCB1 variation surrounding 3435C>T in Europeans.

Publisher

Cold Spring Harbor Laboratory

Subject

Genetics(clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3