Abstract
AbstractArtificial deep convolutional networks (DCNs) meanwhile beat even human performance in challenging tasks. Recently DCNs were shown to also predict real neuronal responses. Their relevance for understanding the neuronal networks in the brain, however, remains questionable. In contrast to the unidirectional architecture of DCNs neurons in cortex are recurrently connected and exchange signals by short pulses, the action potentials. Furthermore, learning in the brain is based on local synaptic mechanisms, in stark contrast to the global optimization methods used in technical deep networks. What is missing is a similarly powerful approach with spiking neurons that employs local synaptic learning mechanisms for optimizing global network performance. Here, we present a framework consisting of mutually coupled local circuits of spiking neurons. The dynamics of the circuits is derived from first principles to optimally encode their respective inputs. From the same global objective function a local learning rule is derived that corresponds to spike-timing dependent plasticity of the excitatory inter-circuit synapses. For deep networks built from these circuits self-organization is based on the ensemble of inputs while for supervised learning the desired outputs are applied in parallel as additional inputs to output layers.Generality of the approach is shown with Boolean functions and its functionality is demonstrated with an image classification task, where networks of spiking neurons approach the performance of their artificial cousins. Since the local circuits operate independently and in parallel, the novel framework not only meets a fundamental property of the brain but also allows for the construction of special hardware. We expect that this will in future enable investigations of very large network architectures far beyond current DCNs, including also large scale models of cortex where areas consisting of many local circuits form a complex cyclic network.
Publisher
Cold Spring Harbor Laboratory
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献