Dynamics ofMycobacterium tuberculosisAg85B revealed by sensitive ELISA

Author:

Ernst Joel D.,Cornelius Amber,Bolz Miriam

Abstract

AbstractSecretion of specific proteins contributes to pathogenesis and immune responses in tuberculosis and other bacterial infections, yet the kinetics of protein secretion and fate of secreted proteins in vivo are poorly understood. We generated new monoclonal antibodies that recognize theM. tuberculosissecreted protein, Ag85B, and used them to establish and characterize a sensitive ELISA to quantitate Ag85B in samples generated in vitro and in vivo. We found that nutritional or culture conditions had little impact on secretion of Ag85B, and that there is considerable variation in Ag85B secretion by distinct strains in theM. tuberculosiscomplex: compared with the commonly-used H37Rv strain (Lineage 4),M. africanum(Lineage 6) secretes less, and two strains from Lineage 2 secrete more Ag85B. We also used the ELISA to determine that the rate of secretion of Ag85B is 10-to 100-fold lower than that of proteins secreted by gram-negative and gram-positive bacteria, respectively. ELISA quantitation of Ag85B in lung homogenates ofM. tuberculosisH37Rv-infected mice revealed that although Ag85B accumulates in the lungs as the bacterial population expands, the amount of Ag85B per bacterium decreases nearly 10,000-fold at later stages of infection, coincident with development of T cell responses and arrest of bacterial population growth. These results indicate that bacterial protein secretion in vivo is dynamic and regulated, and quantitation of secreted bacterial proteins can contribute to understanding pathogenesis and immunity in tuberculosis and other infections.ImportanceBacterial protein secretion contributes to host-pathogen interactions, yet the process and consequences of bacterial protein secretion during infection are poorly understood. We developed a sensitive ELISA to quantitate a protein (termed Ag85B) secreted byM. tuberculosisand used it to find that Ag85B secretion occurs with slower kinetics than for proteins secreted by gram positive and gram negative bacteria, and that accumulation of Ag85B in the lungs is markedly regulated as a function of the bacterial population density. Our results demonstrate that quantitation of bacterial proteins during infection can reveal novel insights into host-pathogen interactions.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3