Abstract
AbstractCentromeres are defined by a unique self-propagating chromatin structure featuring nucleosomes containing the histone H3 variant CENP-A. CENP-A turns over slower than general chromatin and a key question is whether this unusual stability is intrinsic to CENP-A nucleosomes or rather imposed by external factors. We designed a specific genetic screen to identify proteins involved in CENP-A stability based on SNAP-tag pulse chase labeling. Using a double pulse-labeling approach we simultaneously assay for factors with selective roles in CENP-A chromatin assembly. We discover a series of new proteins involved in CENP-A propagation, including proteins with known roles in DNA replication, repair and chromatin modification and transcription, revealing that a broad set of chromatin regulators impacts in CENP-A transmission through the cell cycle. The key factor we find to strongly affect CENP-A stability is SENP6. This SUMO-protease controls not only the levels of chromatin bound CENP-A but is required for the maintenance of virtually the entire centromere and kinetochore, with the exception of CENP-B. Acute depletion of SENP6 protein reveals its requirement for maintaining centromeric CENP-A levels throughout the cell cycle, suggesting that a dynamic SUMO cycle underlies a continuous surveillance of the centromere complex.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献