Simulating multi-level dynamics of antimicrobial resistance in a membrane computing model

Author:

Campos Marcelino,Capilla Rafael,Naya Fernando,Futami Ricardo,Coque Teresa,Moya Andrés,Fernandez-Lanza Val,Cantón Rafael,Sempere José M.,Llorens Carlos,Baquero Fernando

Abstract

AbstractMembrane Computing is a bio-inspired computing paradigm, whose devices are the so-called membrane systems or P systems. The P system designed in this work reproduces complex biological landscapes in the computer world. It uses nested “membrane-surrounded entities” able to divide, propagate and die, be transferred into other membranes, exchange informative material according to flexible rules, mutate and being selected by external agents. This allows the exploration of hierarchical interactive dynamics resulting from the probabilistic interaction of genes (phenotypes), clones, species, hosts, environments, and antibiotic challenges. Our model facilitates analysis of several aspects of the rules that govern the multi-level evolutionary biology of antibiotic resistance. We examine a number of selected landscapes where we predict the effects of different rates of patient flow from hospital to the community and viceversa, cross-transmission rates between patients with bacterial propagules of different sizes, the proportion of patients treated with antibiotics, antibiotics and dosing in opening spaces in the microbiota where resistant phenotypes multiply. We can also evaluate the selective strength of some drugs and the influence of the time-0 resistance composition of the species and bacterial clones in the evolution of resistance phenotypes. In summary, we provide case studies analyzing the hierarchical dynamics of antibiotic resistance using a novel computing model with reciprocity within and between levels of biological organization, a type of approach that may be expanded in the multi-level analysis of complex microbial landscapes.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3