Frictional effects on RNA folding: Speed limit and Kramers turnover

Author:

Hori NaotoORCID,Denesyuk Natalia A.,Thirumalai D.

Abstract

AbstractWe investigated frictional effects on the folding rates of a human Telomerase hairpin (hTR HP) and H-type pseudoknot from the Beet Western Yellow Virus (BWYV PK) using simulations of the Three Interaction Site (TIS) model for RNA. The heat capacity from TIS model simulations, calculated using temperature replica exchange simulations, reproduces nearly quantitatively the available experimental data for the hTR HP. The corresponding results for BWYV PK serve as predictions. We calculated the folding rates (kFs) from more than 100 folding trajectories for each value of the solvent viscosity (η) at a fixed salt concentration of 200 mM. Using the theoretical estimate ( where N is number of nucleotides) for folding free energy barrier, kF data for both the RNAs are quantitatively fit using one dimensional Kramers’ theory with two parameters specifying the curvatures in the unfolded basin and the barrier top. In the high-friction regime (η ≳ 10−5 Pa·s), for both HP and PK, kFs decrease as 1/η whereas in the low friction regime kFs increase as η increases, leading to a maximum folding rate at a moderate viscosity (~ 10−6 Pa·s), which is the Kramers turnover. From the fits, we find that the speed limit to RNA folding at water viscosity is between (1 − 4)μs, which is in accord with our previous theoretical prediction as well as results from several single molecule experiments. Both the RNA constructs fold by parallel pathways. Surprisingly, we find that the flux through the pathways could be altered by changing solvent viscosity, a prediction that is more easily testable in RNA than proteins.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3