Video Foundation Models for Animal Behavior Analysis

Author:

Sun Jennifer J.,Zhou Hao,Zhao Long,Yuan Liangzhe,Seybold Bryan,Hendon David,Schroff Florian,Ross David A.,Adam Hartwig,Hu Bo,Liu Ting

Abstract

AbstractComputational approaches leveraging computer vision and machine learning have transformed the quantification of animal behavior from video. However, existing methods often rely on task-specific features or models, which struggle to generalize across diverse datasets and tasks. Recent advances in machine learning, particularly the emergence of vision foundation models, i.e., large-scale models pre-trained on massive, diverse visual repositories, offers a way to tackle these challenges. Here, we investigate the potential offrozenvideo foundation models across a range of behavior analysis tasks, including classification, retrieval, and localization. We use a single, frozen model to extract general-purpose representations from video data, and perform extensive evaluations on diverse open-sourced animal behavior datasets. Our results demonstrate that features with minimal adaptation from foundation models achieve competitive performance compared to existing methods specifically designed for each dataset, across species, behaviors, and experimental contexts. This highlights the potential of frozen video foundation models as a powerful and accessible backbone for automated behavior analysis, with the ability to accelerate research across diverse fields from neuroscience, to ethology, and to ecology.

Publisher

Cold Spring Harbor Laboratory

Reference77 articles.

1. Toward a Science of Computational Ethology

2. Bommasani, R. , et al. On the opportunities and risks of foundation models. arXiv preprint arXiv:2108.07258 (2021).

3. Achiam, J. et al. GPT-4 technical report. arXiv preprint arXiv:2303.08774 (2023).

4. Radford, A. , et al. Learning transferable visual models from natural language supervision. ICML (2021).

5. The mouse action recognition system (MARS) software pipeline for automated analysis of social behaviors in mice;Elife,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3