Mll4 regulates postnatal palate growth and midpalatal suture development

Author:

Lee Jung-MiORCID,Jung Hunmin,Bruno de Paula Machado Pasqua,Park Yungki,Jeon Shin,Lee Soo-Kyung,Lee Jae W.,Kwon Hyuk-Jae EdwardORCID

Abstract

Abstract MLL4, also known as KMT2D, is a histone methyltransferase that acts as an important epigenetic regulator during various organogenesis programs. Mutations in the MLL4 gene are the major cause for Kabuki syndrome, a human developmental disorder that involves craniofacial birth defects, including anomalies in the palate. The purpose of this study was to investigate the role of Mll4 and the underlying mechanisms in the development and growth of the palate. We generated a novel conditional knockout (cKO) mouse model with tissue-specific deletion of Mll4 in the palatal mesenchyme. By using micro-computed tomography (CT), histology, cell mechanism assays, and gene expression analysis approaches, we examined the development and growth of the palate in the Mll4 -cKO mice. Gross intra-oral examination at adult stages showed that Mll4 -cKO mice had defects along the midline of the palate, which included disrupted rugae pattern and widened midpalatal suture. Micro-CT-based skeletal analysis in the adult mice revealed that the overall palate width was decreased in the Mll4 -cKO mice. By using whole-mount and histological staining approaches at perinatal stages, we identified that the midline defects started to appear as early as 1 day prior to birth, manifesting initially as a widened midpalatal suture, accompanied by increased cell apoptosis in the suture mesenchyme cells. Genome-wide analysis of mRNA expression in the midpalatal suture tissue showed that Mll4 is essential for timely expression of major genes for cartilage development, such as Col2a1 and Acan , at birth. These results were validated through immunofluorescence staining, confirming that the expression of chondrogenic markers Sox9 and Col2a1 were markedly decreased, whereas that of the osteogenic marker Runx2 remained unchanged, in the midpalatal suture of the Mll4 -cKO mice. Indeed, time-course histological analysis during postnatal palate growth revealed retardation in the development of the suture cartilage in the Mll4 -cKO mice. In parallel, time-course micro-CT analysis during postnatal palatogenesis confirmed a transverse growth deficit in the palate of the Mll4 -cKO mice. Taken together, our results show that Mll4 is essential for timely occurrence of key cellular and molecular events that lead to proper midpalatal suture development and palate growth.

Publisher

Cold Spring Harbor Laboratory

Reference56 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3