IsRNAcirc: 3D structure prediction of circular RNAs based on coarse-grained molecular dynamics simulation

Author:

Jiang Haolin,Xu Yulian,Tong Yunguang,Zhang DongORCID,Zhou RuhongORCID

Abstract

AbstractAs an emerging class of RNA molecules, circular RNAs play pivotal roles in various biological processes, thereby determining their three-dimensional (3D) structure is crucial for a deep understanding of their biological significances. Similar to linear RNAs, the development of computational methods for circular RNA 3D structure prediction is challenging, especially considering the inherent flexibility and potentially long length of circular RNAs. Here, we introduce an extension of our previous IsRNA2 model, named IsRNAcirc, to enable circular RNA 3D structure predictions through coarse-grained molecular dynamics simulations. The workflow of IsRNAcirc consists of four main steps, including input preparation, end closure, structure prediction, and model refinement. Our results demonstrate that IsRNAcirc can provide reasonable 3D structure predictions for circular RNAs, which significantly reduce the locally irrational elements contained in the initial input. Moreover, for a validation test set comprising 34 circular RNAs, our IsRNAcirc can generate 3D models with better scores than the template-based 3dRNA method. These findings demonstrate that our IsRNAcirc method is a promising tool to explore the structural details along with intricate interactions of circular RNAs.Author SummaryKnowledge of the 3D structure of circular RNA molecules can help us better understand their roles in eukaryotic cells. However, experimental determination of circular RNA 3D structure remains challenging, with currently only one complete circular RNA 3D structure available in the Protein Data Bank. Thus, extending from their linear counterparts, computational methods that can predict circular RNA 3D structure are urgently needed. In particular, physics-basedde novo3D structure prediction methods are promising due to their powerful sampling capability in the conformational space, which avoid the problem of limited available templates in template-based approaches. We have developed IsRNAcirc, a new physics-based method that employs an accurate coarse-grained force field and replica-exchange molecular dynamics simulations to predict the 3D structure of circular RNAs. IsRNAcirc is shown to significantly reduce the number of locally irrational structures in the input trials, which are caused by the lack of suitable templates and the improper assembly of fragments. Furthermore, in the absence of experimental reference structures, the predicted 3D models were validated using the popular scoring functions, such as DFIRE-RNA and rsRNASP, demonstrating that IsRNAcirc outperforms the template-based 3dRNA method in generating low-energy conformations.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3