Pathophysiology of hypereosinophilia-associated heart disease

Author:

Sunusi Usman,Ziegelmeyer Ben,Osuji Immaculeta,Medvedovic Mario,Todd Haley,Abou-Khalil Joe,Zimmermann NivesORCID

Abstract

AbstractBackgroundCardiac complications in patients with hypereosinophilia cause significant morbidity and mortality. However, mechanisms of how eosinophilic inflammation causes heart damage are poorly understood.MethodsWe developed a model of hypereosinophilia-associated heart disease by challenging hypereosinophilic mice with peptide from the cardiac myosin heavy chain. Disease outcomes were measured by histology, immunohistochemistry, flow cytometry, and measurement of cells and biomarkers in peripheral blood. Eosinophil dependence was determined by using eosinophil-deficient mice (ΔdblGATA). Single cells from heart were subjected to single cell RNA sequencing to assess cell composition, subtypes and expression profiles.ResultsMice challenged with myocarditic and control peptide had peripheral blood leukocytosis, but only those challenged with myocarditic peptide had heart inflammation. Heart tissue was infiltrated by eosinophil-rich inflammatory infiltrates associated with cardiomyocyte damage. Disease penetrance and severity were dependent on the presence of eosinophils. Single cell RNA sequencing showed enrichment of myeloid cells, T-cells and granulocytes (neutrophils and eosinophils) in the myocarditic mice. Macrophages were M2 skewed, and eosinophils had an activated phenotype. Gene enrichment analysis identified several pathways potentially involved in pathophysiology of disease.ConclusionEosinophils are required for heart damage in hypereosinophilia-associated heart disease. Additionally, myeloid cells, granulocytes and T-cell cooperatively or independently participate in the pathogenesis of hypereosinophilia-associated heart disease.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3