Dnmt1 determines bone length by regulating energy metabolism of growth plate chondrocytes

Author:

Yanagihara Yuta,Takahashi Masatomo,Izumi Yoshihiro,Kinoshita Tomofumi,Takao Masaki,Bamba Takeshi,Imai YuukiORCID

Abstract

AbstractChondrocytes differentiated from mesenchymal stem cells play a role in determining skeletal patterns by ossification. However, the mechanism by which maintenance DNA methylation in chondrocytes regulates differentiation and skeletal formation is unclear. In the Musculoskeletal Knowledge Portal, Dnmt1 was significantly associated with “Height”. Long bones in the limbs of Dnmt1-deficient (Dnmt1ΔPrx1) mice are significantly shortened due to decreased chondrocyte proliferation and accelerated differentiation. Integrated analysis of RNA-Seq and MBD-Seq revealed that inDnmt1ΔPrx1chondrocytes reduced DNA methylation resulted in increased expression of genes related to energy metabolism and to ossification. Metabolomic analyses confirmed that levels of nearly all energy metabolites were increased inDnmt1ΔPrx1chondrocytes. These results indicate that Dnmt1-mediated maintenance DNA methylation governs chondrocyte differentiation by regulating energy metabolism through both gene expression and modulation of metabolite supplies. Taken together, this study suggests that appropriate DNA methylation status in chondrocytes can orchestrate growth plate mineralization and subsequently determine bone length.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3