Genetic variance in the murine defensin locus modulates glucose homeostasis

Author:

Masson Stewart W.C.ORCID,Simpson Rebecca C.,Cutler Harry B.ORCID,Carlos Patrick W.,Marian Oana C.,Potter Meg,Madsen Søren,Cooke Kristen C.,Craw Niamh R.,Fuller Oliver K.,Harney Dylan J.,Larance Mark,Cooney Gregory J.,Morahan Grant,Shanahan Erin R.,Hodgkins Christopher,Payne Richard J.,Stöckli Jacqueline,James David E.

Abstract

AbstractInsulin resistance is heritable; however, the underlying genetic drivers remain elusive. In seeking these, we performed genetic mapping of insulin sensitivity in 670 chow-fed Diversity Outbred in Australia (DOz) mice and identified a genome-wide significant quantitative trait loci (QTL) within the chromosome 8 defensin gene cluster. Defensins are antimicrobial peptides secreted from Paneth cells into the intestinal lumen that can alter the abundance of beneficial and detrimental microbes. Proteomic analysis of the small intestine from Diversity Outbred founder strains revealed that alpha-defensin 26 positively correlated with whole-body insulin sensitivity, and founder strain genetic contributions to the insulin sensitivity QTL. To validate these findings, we synthesised the secreted form of alpha-defensin 26 and performed diet supplementation experiments in two mouse strains with distinct endogenous alpha-defensin 26 expression levels. In validation of our DOz data, the strain with lower endogenous expression (C57BL/6J) exhibited improved insulin sensitivity and reduced gut permeability following defensin supplementation. In contrast, the higher expressing strain (A/J) exhibited hypoinsulinemia, glucose intolerance and muscle wasting. Gut microbiome profiling in these mice revealed both global and strain-specific changes including some observed in DOz mice positive for the putative insulin sensitivity allele. Inspired by previous work linking glucose homeostasis to gut microbiome mediated changes in plasma bile acids, we investigated these as a potential mechanism. As with metabolic changes, A/J but not C57BL/6J mice exhibited differential plasma bile acid concentrations following defensin supplementation. These data highlight the importance of considering individual differences when designing metabolic therapeutics and paves the way for further studies investigating links between the host genetics and the microbiome.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3