Multivariate analysis of multimodal brain structure predicts individual differences in risk and intertemporal preference

Author:

Bergström Fredrik,Schu Guilherme,Lee SangilORCID,Lerman Caryn,Kable Joseph W.

Abstract

AbstractLarge changes to brain structure (e.g., from damage or disease) can explain alterations in behavior. It is therefore plausible that smaller structural differences in healthy samples can be used to better understand and predict individual differences in behavior. Despite the brain’s multivariate and distributed structure-to-function mapping, most studies have used univariate analyses of individual structural brain measures. Here we used a multivariate approach in a multimodal data set composed of volumetric, surface-based, diffusion-based, and functional resting-state MRI measures to predict reliable individual differences in risk and intertemporal preferences. We show that combining twelve brain structure measures led to better predictions across tasks than using any individual measure, and by examining model coefficients, we visualize the relative contribution of different brain measures from different brain regions. Using a multivariate approach to brain structure-to-function mapping that combines across many brain structure properties, along with reliably measured behavior phenotypes, may increase out-of-sample prediction accuracies and insight into neural underpinnings. Furthermore, this methodological approach may be useful to improve predictions and neural insight across basic, translational, and clinical research fields.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3