MDR1 DNA glycosylase regulates the expression of genomically imprinted genes and helitrons

Author:

Higgins Kaitlin MORCID,Gent JonathanORCID,Anderson Sarah NORCID

Abstract

AbstractTargeted demethylation by DNA glycosylases (DNGs) results in differential methylation between parental alleles in the endosperm, which drives imprinted expression. Here, we performed RNA sequencing on endosperm derived from DNG mutantmdr1and wild-type endosperm. Consistent with the role of DNA methylation in gene silencing, we find 96 gene and 86 TE differentially expressed (DE) transcripts that lost expression in the hypermethylatedmdr1mutant. Compared with other endosperm transcripts, themdr1targets are enriched for TEs (particularly Helitrons), and DE genes are depleted for both core genes and GO term assignments, suggesting that the majority of DE transcripts are TEs and pseudo-genes. By comparing DE genes to imprinting calls from prior studies, we find that the majority of DE genes have maternally biased expression, and approximately half of all maternally expressed genes (MEGs) are DE in this study. In contrast, no paternally expressed genes (PEGs) are DE. DNG-dependent imprinted genes are distinguished by maternal demethylation and expression primarily in the endosperm, so we also performed EM-seq on hybrids to identify maternal demethylation and utilized a W22 gene expression atlas to identify genes expressed primarily in the endosperm. Overall, approximately ⅔ of all MEGs show evidence of regulation by DNA glycosylases. Taken together, this study solidifies the role of MDR1 in the regulation of maternally expressed, imprinted genes and TEs and identifies subsets of genes with DNG-independent imprinting regulation.Significance StatementThis work investigates the transcriptome changes resulting from the loss of function of DNA glycosylase MDR1, revealing that, in wild-type endosperm, targets of MDR1 are expressed predominantly from the maternal allele and this expression is suppressed in mutants. Furthermore, by combining expression data, DNA methylation data, and developmental expression data, we are able to categorize all maternally expressed, imprinted genes based on DNA glycosylase dependent or independent regulatory methods.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3