Single-cell spatial transcriptomics reveals molecular patterns of selective neuronal vulnerability to α-synuclein pathology in a transgenic mouse model of Lewy body disease

Author:

Horan-Portelance LiamORCID,Iba MichiyoORCID,Acri Dominic J.ORCID,Gibbs J. RaphaelORCID,Masliah EliezerORCID,Cookson Mark R.ORCID

Abstract

AbstractOne of the unifying pathological hallmarks of Parkinson’s disease (PD) and dementia with Lewy bodies (DLB) is the presence of misfolded, aggregated, and often phosphorylated forms of the protein α-synuclein in neurons. α-Synuclein pathology appears in select populations of neurons throughout various cortical and subcortical regions, and little is currently known about why some neurons develop pathology while others are spared. Here, we utilized subcellular-resolution imaging-based spatial transcriptomics (IST) in a transgenic mouse model that overexpresses wild-type human α-synuclein (α-syn-tg) to evaluate patterns of selective neuronal vulnerability to α-synuclein pathology. By performing post-IST immunofluorescence for α-synuclein phosphorylated at Ser129 (pSyn), we identified cell types in the cortex and hippocampus that were vulnerable or resistant to developing pSyn pathology. Next, we investigated the transcriptional underpinnings of the observed selective vulnerability using a set of custom probes to detect genes involved in α-synuclein processing and toxicity. We identified expression of the kinase:substrate pairPlk2, which phosphorylates α-synuclein at Ser129, and humanSNCA(hSNCA), as underlying the selective vulnerability to pSyn pathology. Finally, we performed differential gene expression analysis, comparing non-transgenic cells to pSyn-and pSyn+α-syn-tg cells to reveal gene expression changes downstream ofhSNCAoverexpression and pSyn pathology, which included pSyn-dependent alterations in mitochondrial and endolysosomal genes. This study provides a comprehensive use case of IST, yielding new biological insights into the formation of α-synuclein pathology and its downstream effects in a PD/DLB mouse model.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3