Residual Microglia Following Short-term PLX5622 Treatment in 5xFAD Mice Exhibit Diminished NLRP3 Inflammasome and mTOR Signaling, and Enhanced Autophagy

Author:

Kodali Maheedhar,Madhu Leelavathi N.,Somayaji Yogish,Attaluri Sahithi,Huard Charles,Panda Prashanta Kumar,Shankar Goutham,Rao Shama,Shuai Bing,Gonzalez Jenny J.,Oake Chris,Hering Catherine,Babu Roshni Sara,Kotian Sanya,Shetty Ashok K.ORCID

Abstract

AbstractChronic neuroinflammation represents a prominent hallmark of Alzheimer’s disease (AD). While moderately activated microglia are pivotal in clearing amyloid beta (Aβ), hyperactivated microglia perpetuate neuroinflammation. Prior investigations have indicated that the elimination of ∼80% of microglia through a month-long inhibition of the colony-stimulating factor 1 receptor (CSF1R) during the advanced stage of neuroinflammation in 5xFamilial AD (5xFAD) mice mitigates synapse loss and neurodegeneration without impacting Aβ levels. Furthermore, prolonged CSF1R inhibition diminished the development of parenchymal plaques. Nonetheless, the immediate effects of short-term CSF1R inhibition during the early stages of neuroinflammation on residual microglial phenotype or metabolic fitness are unknown. Therefore, we investigated the effects of 10-day CSF1R inhibition in three-month-old female 5xFAD mice, a stage characterized by the onset of neuroinflammation and minimal Aβ plaques. We observed ∼65% microglia depletion in the hippocampus and cerebral cortex. The leftover microglia demonstrated a noninflammatory phenotype, with highly branched and ramified processes and reduced NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome complexes. Moreover, plaque-associated microglia were reduced in number with diminished Clec7a (dectin-1) expression. Additionally, both microglia and neurons displayed reduced mechanistic target of rapamycin (mTOR) signaling and autophagy. Biochemical assays validated the inhibition of NLRP3 inflammasome activation, decreased mTOR signaling, and enhanced autophagy. However, short-term CSF1R inhibition did not influence Aβ plaques, soluble Aβ-42 levels, or hippocampal neurogenesis. Thus, short-term CSF1R inhibition during the early stages of neuroinflammation in 5xFAD mice promotes the retention of homeostatic microglia with diminished inflammasome activation and mTOR signaling, alongside increased autophagy.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3