CACHE Challenge #1: targeting the WDR domain of LRRK2, a Parkinson’s Disease associated protein

Author:

Li Fengling,Ackloo Suzanne,Arrowsmith Cheryl H.,Ban Fuqiang,Barden Christopher J.,Beck Hartmut,Beránek Jan,Berenger Francois,Bolotokova Albina,Bret Guillaume,Breznik Marko,Carosati Emanuele,Chau Irene,Chen Yu,Cherkasov Artem,Della Corte Dennis,Denzinger Katrin,Dong Aiping,Draga Sorin,Dunn Ian,Edfeldt Kristina,Edwards Aled,Eguida Merveille,Eisenhuth Paul,Friedrich Lukas,Fuerll Alexander,Gardiner Spencer S,Gentile Francesco,Ghiabi Pegah,Gibson Elisa,Glavatskikh Marta,Gorgulla Christoph,Guenther Judith,Gunnarsson Anders,Gusev Filipp,Gutkin Evgeny,Halabelian Levon,Harding Rachel J.,Hillisch Alexander,Hoffer Laurent,Hogner Anders,Houliston Scott,Irwin John J,Isayev Olexandr,Ivanova Aleksandra,Jarrett Austin J,Jensen Jan H.,Kireev Dmitri,Kleber Julian,Koby S. Benjamin,Koes David,Kumar Ashutosh,Kurnikova Maria G.,Kutlushina Alina,Lessel Uta,Liessmann Fabian,Liu Sijie,Lu WeiORCID,Meiler JensORCID,Mettu Akhila,Minibaeva Guzel,Moretti Rocco,Morris Connor J,Narangoda Chamali,Noonan Theresa,Obendorf Leon,Pach Szymon,Pandit Amit,Perveen Sumera,Poda Gennady,Polishchuk Pavel,Puls Kristina,Pütter Vera,Rognan Didier,Roskams-Edris Dylan,Schindler Christina,Sindt François,Spiwok Vojtěch,Steinmann Casper,Stevens Rick L.,Talagayev Valerij,Tingey Damon,Vu Oanh,Walters W. Patrick,Wang Xiaowen,Wang Zhenyu,Wolber GerhardORCID,Wolf Clemens Alexander,Wortmann Lars,Zeng Hong,Zepeda Carlos A.,Zhang Kam Y. J.,Zhang Jixian,Zheng Shuangjia,Schapira MatthieuORCID

Abstract

ABSTRACTThe CACHE challenges are a series of prospective benchmarking exercises meant to evaluate progress in the field of computational hit-finding. Here we report the results of the inaugural CACHE #1 challenge in which 23 computational teams each selected up to 100 commercially available compounds that they predicted would bind to the WDR domain of the Parkinson’s disease target LRRK2, a domain with no known ligand and only an apo structure in the PDB. The lack of known binding data and presumably low druggability of the target is a challenge to computational hit finding methods. Seventy-three of the 1955 procured molecules bound LRRK2 in an SPR assay with KDlower than 150 μM and were advanced to a hit expansion phase where computational teams each selected up to 50 analogs each. Binding was observed in two orthogonal assays with affinities ranging from 18 to 140 μM for seven chemically diverse series. The seven successful computational workflows varied in their screening strategies and techniques. Three used molecular dynamics to produce a conformational ensemble of the targeted site, three included a fragment docking step, three implemented a generative design strategy and five used one or more deep learning steps. CACHE #1 reflects a highly exploratory phase in computational drug design where participants sometimes adopted strikingly diverging screening strategies. Machine-learning accelerated methods achieved similar results to brute force (e.g. exhaustive) docking. First-in-class, experimentally confirmed compounds were rare and weakly potent, indicating that recent advances are not sufficient to effectively address challenging targets.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3