Multi-sample non-negative spatial factorization

Author:

Wang Yi,Woyshner KylaORCID,Sriworarat ChaichontatORCID,Stein-O’Brien GenevieveORCID,Goff Loyal AORCID,Hansen Kasper D.ORCID

Abstract

AbstractIt is important to model biological variation when analyzing spatial transcriptomics data from multiple samples. One approach to multi-sample analysis is to spatially align samples, but this is a challenging problem. Here, we provide an alignment-free framework for generalizing a one-sample spatial factorization model to multi-sample data. Using this framework, we develop a method, called multi-sample non-negative spatial factorization (mNSF) that extends the one-sample non-negative spatial factorization (NSF) framework to a multi-sample dataset. Our model allows for a sample-specific model for the spatial correlation structure and extracts a low-dimensional representation of the data. We illustrate the performance of mNSF by simulation studies and real data. mNSF identifies true factors in simulated data, identifies shared anatomical regions across samples in real data and reveals region-specific biological functions. mNSFs performance is similar to alignment based methods when alignment is possible, but extends analysis to situations where spatial alignment is impossible. We expect multi-sample factorization methods to be a powerful class of methods for analyzing spatially resolved transcriptomics data.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3