Muscle and intestine innexins with muscle Deg/Enac channels promote muscle coordination and embryo elongation

Author:

Llense FloraORCID,Ferraro Teresa,Yang Xinyi,Song Hanla,Labouesse Michel

Abstract

AbstractBody axis elongation represents a fundamental morphogenetic process in development, which involves cell shape changes powered by mechanical forces. How mechanically interconnected tissues coordinate in organismal development remains largely unexplored. DuringC. eleganselongation, cyclic forces generated by muscle contractions induce remodeling of adherens junctions and the actin cytoskeleton in the epidermis, facilitating gradual embryo lengthening. While previous studies have identified key players in epidermal cells, understanding how muscle cells coordinate their activity for proper embryo elongation remains unsolved. Using a Calcium sensor to monitor muscle activity during elongation, we identified two cells in each muscle quadrant with a pacemaker-like function that orchestrate muscle activity within their respective quadrants. Strikingly, ablation of these cells halted muscle contractions and delayed elongation. A targeted RNAi screen focusing on communication channels identified two innexins and two Deg channels regulating muscle activity, which proved required for normal embryonic elongation. Interestingly, one innexin exhibits specific expression in intestinal cells. Our findings provide novel insights into how embryonic body wall muscles coordinate their activity and how interconnected tissues ensure proper morphogenesis.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3