A study of the visualization of artificial intelligence applications in chronic kidney disease in the literature over the last 20 years

Author:

Li Yudi,Ding Ying,Xu Yan,Meng Haoji,Wu Hongji,Li Donglin,Hu Yibo

Abstract

AbstractChronic kidney disease (CKD) is a global public health problem characterized by persistent kidney damage or loss of kidney function. Previously, the diagnosis of CKD has mainly relied on serum creatinine and estimation of the glomerular filtration rate. However, with the development and progress of artificial intelligence (AI), AI has played different roles in various fields, such as early diagnosis, progression prediction, prediction of associated risk factors, and drug safety and efficacy evaluation. Therefore, research related to the application of AI in the field of CKD has become a hot topic at present. Therefore, this study adopts a bibliometric approach to study and analyze the development and evolution patterns and research hotspots of AI-CKD. English publications related to the field between January 1, 2004, and June 27, 2024, were extracted from the Web of Science Core Collection database. The research hotspots and trends of AI-CKD were analyzed at multiple levels, including publication trends, authors, institutions, countries, references and keywords, using VOSviewer and CiteSpace. The results showed that a total of 203 publications on AI-CKD were included in the study, of which Barbieri Carlo from the University of Milan, Italy, had the highest number of publications (NP=5) and had a high academic impact (H-Index=5), while the USA and its institution, the Mayo Clinic, were the publications. The USA and its Mayo Clinic are the countries and institutions with the highest number of publications, and China is the country with the second highest number of publications, with three institutions attributed to China among the top five institutions. Germany’s institution, Fresenius Medical Care, has the highest academic impact (H-index=6). Keyword analysis yielded artificial intelligence, chronic kidney disease, machine learning, prediction model, risk, deep learning, and other keywords with high frequency, and cluster analysis based on the timeline yielded a total of 8 machine learning, deep learning, retinal microvascular abnormality, renal failure, Bayesian network, anemia, bone disease, and allograft nephropathology clusters. This study provides a comprehensive overview of the current state of research and global frontiers of AI-CKD through bibliometric analysis. These findings can provide a valuable reference and guidance for researchers.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3