Enhancing Statistical Power While Maintaining Small Sample Sizes in Behavioral Neuroscience Experiments Evaluating Success Rates

Author:

Desachy Theo,Thevenet Marc,Garcia SamuelORCID,Lightning Anistasha,Didier AnneORCID,Mandairon NathalieORCID,Kuczewski NicolaORCID

Abstract

AbstractStudies with low statistical power reduce the probability of detecting true effects and often lead to overestimated effect sizes, undermining the reproducibility of scientific results. While several free statistical software tools are available for calculating statistical power, they often do not account for the specialized aspects of experimental designs in behavioral studies that evaluate success rates. To address this gap, we developed “SuccessRatePower” a free and user-friendly power calculator based on Monte Carlo simulations that takes into account the particular parameters of these experimental designs. Using “SuccessRatePower", we demonstrated that statistical power can be increased by modifying the experimental protocol in three ways: 1) reducing the probability of succeeding by chance (chance level), 2) increasing the number of trials used to calculate subject success rates, and 3) employing statistical analyses suited for discrete values. These adjustments enable even studies with small sample sizes to achieve high statistical power. Finally, we performed an associative behavioral task in mice, confirming the simulated statistical advantages of reducing chance levels and increasing the number of trials in such studies

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3