Abstract
AbstractThe unique epibiotic-parasitic relationship betweenNanosynbacter lyticustype strain TM7x, a member of the newly identified Candidate Phyla Radiation, now referred to asPatescibacteria, and its basibiont,Schaalia odontolyticastrain XH001 (formerlyActinomyces odontolyticus), require more powerful genetic tools for deeper understanding of the genetic underpinnings that mediate their obligate relationship. Previous studies have mainly characterized the genomic landscape of XH001 during or post TM7x infection through comparative genomic or transcriptomic analyses followed by phenotypic analysis. Comprehensive genetic dissection of the pair is currently cumbersome due to the lack of robust genetic tools in TM7x. However, basic genetic tools are available for XH001 and this study expands the current genetic toolset by developing high-throughput transposon insertion sequencing (Tn-seq). Tn-seq was employed to screen for essential genes in XH001 under laboratory conditions. A highly saturated Tn-seq library was generated with nearly 660,000 unique insertion mutations, averaging one insertion every 2-3 nucleotides. 203 genes, 10.5% of the XH001 genome, were identified as putatively essential.
Publisher
Cold Spring Harbor Laboratory