A wavelet-based approach generates quantitative, scale-free and hierarchical descriptions of 3D genome structures and new biological insights

Author:

Pellow RyanORCID,Comeron Josep MORCID

Abstract

ABSTRACTEukaryotes fold their genomes within nuclei in three-dimensional space, with coordinated multiscale structures including loops, topologically associating domains (TADs), and higher-order chromosome territories. This 3D organization plays essential roles in gene regulation and development, responses to physiological stress, and disease. However, current methodologies to infer these 3D structures from genomic data have limitations. These include varying outcomes depending on the resolution of the analysis and sequencing depth, qualitative results that hinder statistical comparisons, lack of insight into the frequency of the structures in samples with many genomes, and no direct inference of hierarchical structures. These shortcomings can make it difficult for the rigorous comparison of 3D properties across genomes, between experimental conditions, or species. To address these challenges, we developed a wavelet transform-based method (WaveTAD) that describes the 3D nuclear organization in a resolution-free, probabilistic, and hierarchical manner. WaveTAD generates probabilities that capture the variable frequency within samples and shows increased accuracy and sensitivity compared to current approaches. We applied WaveTAD to multiple datasets fromDrosophila, mouse, and humans to illustrate new biological insights that our more sensitive and quantitative approach provides, such as the widespread presence of embryonic 3D organization before zygotic genome activation, the effect of multiple CTCF units on the stability of loops and TADs, and the association between gene expression and TAD structures in COVID-19 patients or sex-specific transcription inDrosophila.

Publisher

Cold Spring Harbor Laboratory

Reference93 articles.

1. Cooler: scalable storage for Hi-C data and other genomically labeled arrays

2. Wavelets as a tool for systems analysis and control;Journal of Vibration and Control,2015

3. Wavelet transforms and the ECG: a review

4. Systematic evaluation of chromosome conformation capture assays;Nat Methods,2021

5. Aldrich E . 2013. Wavelets: A package of functions for computing wavelet filters, wavelet transforms and multiresolution analyses. R package version 03-0.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3