Evaluating the Importance of Glucagon in the Insulin-Glucose Regulatory System: A Mechanistic Modeling Approach

Author:

Dalton Mackenzie,Asante-Asamani Emmanuel,Greene JamesORCID

Abstract

AbstractThe dynamics of insulin and glucose are tightly regulated. The pancreatic islets of Langerhans contain both beta and alpha cells which produce insulin and glucagon, respectively. Insulin is the only hormone in the body that lowers blood glucose levels by acting like a key for glucose to enter cells. Without insulin, cells cannot utilize glucose, their primary source of energy. In contrast, glucagon functions as a hormone which elevates blood glucose levels by promoting the breakdown of glycogen in the liver. Maintaining blood glucose within a safe range is vital since both excessively high and low levels can be life-threatening (hyperglycemia and hypoglycemia, respectively), and these two hormones work together to achieve this balance. In this work we aim to underscore the significance of glucagon in the insulin-glucose regulatory system. We construct a three-compartment mechanistic model that includes insulin, glucose, and glucagon, which is then validated by fitting to publicly available from an intravenous glucose tolerance test (IVGTT). After model validation, we investigate how removing glucose feedback from insulin secretion, as seen in insulin-dependent diabetes, disrupts the regulation of glucose and glucagon. To do this, we simulate the model (a) when insulin secretion is reduced to mimic an insufficient dose of insulin, (b) when the peak of insulin action is delayed mimicking a dosing delay of insulin, and (c) when both occur simultaneously. Lastly, we test different half-lives of insulin to evaluate how an increased half-life of manufactured insulin may further disrupt the system. We find that when insulin secretion is decreased, glucagon still responds to high glucose levels by decreasing glucagon production. This suggests that in cases of type 2 diabetes, where glucagon secretion is elevated despite high levels of glucose, a lack of insulin response may not be the sole cause for glucagon dysfunction. We also find that delaying insulin secretion increases the risk of a hypoglycemic event through a suppression of glucagon production. Initially, the spike in glucose causes glucagon secretion to be reduced; this is then followed by the delay in insulin peak which then continues to suppress glucagon despite blood glucose levels falling, leading to a lack of response by glucagon and a subsequent hypoglycemic event. Furthermore, we find that a higher half-life of insulin causes it to remain longer in the blood stream, inhibiting glucagon’s response to severely low glucose levels (glucose levels less than 3.9 mmol/L). This sheds light on why patients taking exogenous insulin, which has a longer half-life than endogenous insulin, may have difficulty recovering from hypoglycemic events. Hence, our model suggests that keeping the half-life of exogenous insulin below 10 minutes and administering it immediately after meals could help reduce the risk of hypoglycemic events in patients with type 1 or insulin dependent diabetes. Overall, we highlight how a disruption in the feedback between insulin and glucose not only alters blood glucose levels, but also glucagon response, which may lead to further disruption of the system.

Publisher

Cold Spring Harbor Laboratory

Reference48 articles.

1. 11.2.1 - Bootstrapping Methods | STAT 500. en. URL: https://online.stat.psu.edu/stat500/lesson/11/11.2/11.2.1(visited on 02/10/2024).

2. The consequences of hypoglycaemia

3. Dr Marc Barton . The Discovery of Insulin. en-GB. June 2018. URL: https://www.pastmedicalhistory.co.uk/the-discovery-of-insulin/(visited on 01/17/2024).

4. Physiologic evaluation of factors controlling glucose tolerance in man: measurement of insulin sensitivity and beta-cell glucose sensitivity from the response to intravenous glucose;In: Journal of Clinical Investigation,1981

5. Quantitative estimation of insulin sensitivity.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3