IL-13 decreases susceptibility to airway epithelial SARS-CoV-2 infection but increases disease severity in vivo

Author:

Ghimire ShreyaORCID,Xue Biyun,Li Kun,Gannon Ryan M.ORCID,Wohlford-Lenane Christine L.,Thurman Andrew L.ORCID,Gong Huiyu,Necker Grace C.,Zheng Jian,Meyerholz David K.ORCID,Perlman StanleyORCID,McCray Paul B.ORCID,Pezzulo Alejandro A.ORCID

Abstract

ABSTRACTTreatments available to prevent progression of virus-induced lung diseases, including coronavirus disease 2019 (COVID-19) are of limited benefit once respiratory failure occurs. The efficacy of approved and emerging cytokine signaling-modulating antibodies is variable and is affected by disease course and patient-specific inflammation patterns. Therefore, understanding the role of inflammation on the viral infectious cycle is critical for effective use of cytokine-modulating agents. We investigated the role of the type 2 cytokine IL-13 on SARS-CoV-2 binding/entry, replication, and host response in primary HAE cells in vitro and in a model of mouse-adapted SARS-CoV-2 infection in vivo. IL-13 protected airway epithelial cells from SARS-CoV-2 infection in vitro by decreasing the abundance of ACE2- expressing ciliated cells rather than by neutralization in the airway surface liquid or by interferon-mediated antiviral effects. In contrast, IL-13 worsened disease severity in mice; the effects were mediated by eicosanoid signaling and were abolished in mice deficient in the phospholipase A2 enzyme PLA2G2D. We conclude that IL-13-induced inflammation differentially affects multiple steps of COVID-19 pathogenesis. IL-13-induced inflammation may be protective against initial SARS-CoV-2 airway epithelial infection; however, it enhances disease progression in vivo. Blockade of IL-13 and/or eicosanoid signaling may be protective against progression to severe respiratory virus-induced lung disease.RESEARCH IN CONTEXTEvidence before this studyPrior to this study, various pieces of evidence indicated the significant role of cytokines in the pathogenesis and progression of COVID-19. Severe COVID-19 cases were marked by cytokine storm syndrome, leading to immune activation and hyperinflammation. Treatments aimed at modulating cytokine signaling, such as IL-6 receptor antagonists, had shown moderate effects in managing severe COVID-19 cases. Studies also revealed an excessive production of type 2 cytokines, particularly IL-13 and IL-4, in the plasma and lungs of COVID-19 patients, which was associated with adverse outcomes. Treatment with anti-IL-13 monoclonal antibodies improved survival following SARS-CoV-2 infection, suggesting that IL-13 plays a role in disease severity. Type 2 cytokines were observed to potentially suppress type 1 responses, essential for viral clearance, and imbalances between these cytokine types were linked to negative COVID-19 outcomes. These findings highlighted the complex interactions between cytokines and the immune response during viral infections, underscoring the importance of understanding IL-13’s role in COVID-19 and related lung diseases for developing effective therapeutic interventions.Added value of this studyIn this study, we explored the impact of IL-13-induced inflammation on various stages of the SARS-CoV-2 infection cycle using both murine (in vivo) and primary human airway epithelial (in vitro) culture models. Our findings indicated that IL-13 provided protection to airway epithelial cells against SARS-CoV-2 infection in vitro, partly by reducing the number of ACE2- expressing ciliated cells. Conversely, IL-13 exacerbated the severity of SARS2-N501YMA30-induced disease in mice, primarily through Pla2g2d-mediated eicosanoid biosynthesis.Implications of the available evidenceCurrent evidence indicates that PLA2G2D plays a crucial role in the IL-13-driven exacerbation of COVID-19 in mice, suggesting that targeting the IL-13-PLA2G2D axis could help protect against SARS-CoV-2 infection. These insights are important for clinical research, especially for studies focusing on drugs that modify IL-13 signaling or modulate eicosanoids in the treatment of asthma and respiratory virus-induced lung diseases.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3