Plastid translocon recycling in dinoflagellates demonstrates the portability of complex plastids between hosts

Author:

Lewis William HORCID,Paris GiuliaORCID,Beedessee GirishORCID,Koreny LudekORCID,Flores VictorORCID,Dendooven TomORCID,Gallet BenoitORCID,Yee DanielORCID,Lam SimonORCID,Decelle JohanORCID,Luisi Ben FORCID,Waller Ross FORCID

Abstract

ABSTRACTThe plastids of photosynthetic organisms on land are predominantly ‘primary plastids’ derived from an ancient endosymbiosis of a cyanobacterium. Conversely, marine photosynthetic diversity is dominated by plastids gained by subsequent endosymbioses of photosynthetic eukaryotes, so-called ‘complex plastids’. The plastids of major eukaryotic lineages including cryptophytes, haptophytes, stramenopiles, dinoflagellates and apicomplexans, were originally all posited to derive from a single secondary endosymbiosis of a red alga—the ‘chromalveloate’ hypothesis1. Subsequent phylogenetic resolution of eukaryotes indicated that separate events of plastid acquisition must have occurred to account for this distribution of plastids2,3. The number of such events, however, and the donor organisms for the new plastid endosymbioses are still not resolved. A perceived bottleneck of endosymbiotic plastid gain is the development of protein targeting from the hosts into new plastids, and this supposition has often driven hypotheses towards minimising the number of plastid-gain events to explain plastid distribution in eukaryotes. But how plastid protein-targeting is established for new endosymbionts is often unclear, which makes it difficult to assess the likelihood of plastid transfers between lineages. Here we show that Kareniaceae dinoflagellates, that possess complex plastids known to be derived from haptophytes, acquired all the necessary protein import machinery from these haptophytes. Furthermore, cryo-electron tomography revealed that no additional membranes were added to the Kareniaceae complex plastid during serial endosymbiosis, suggesting that the haptophyte-derived import processes were sufficient. Our analyses suggests that complex red plastids are preadapted for horizontal transmission, potentially explaining their widespread distribution in aquatic algal diversity.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3