Diffusion model enables quantitative CBF analysis of Alzheimer’s Disease

Author:

Shou QinyangORCID,Cen StevenORCID,Chen Nan-kueiORCID,Ringman John MORCID,Wen JunhaoORCID,Kim HosungORCID,Wang Danny JJORCID,

Abstract

ABSTRACTObjectivesCerebral blood flow (CBF) measured by arterial spin labeling (ASL) is a promising biomarker for Alzheimer’s Disease (AD). ASL data from multiple vendors were included in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset. However, the M0 images were missing in Siemens ASL data, prohibiting CBF quantification. Here, we utilized a generative diffusion model to impute the missing M0 and validated generated CBF data with acquired data from GE.MethodsA conditional latent diffusion model was trained to generate the M0 image and validate it on an in-house dataset (N=55) based on image similarity metrics, accuracy of CBF quantification, and consistency with the physical model. This model was then applied to the ADNI dataset (Siemens:N=211) to impute the missing M0 for CBF calculation. We further compared the imputed data (Siemens) and acquired data (GE) regarding regional CBF differences by AD stages, their classification accuracy for AD prediction, and CBF trajectory slopes estimated by a mixed effect model.ResultsThe trained diffusion model generated the M0 image with high fidelity (Structural similarity index, SSIM=0.924±0.019; peak signal-to-noise ratio, PSNR=33.348±1.831) and caused minimal bias in CBF values (mean difference in whole brain is 1.07±2.12ml/100g/min). Both generated and acquired CBF data showed similar differentiation patterns by AD stages, similar classification performance, and decreasing slopes with AD progression in specific AD-related regions. Generated CBF data also improved accuracy in classifying AD stages compared to qualitative perfusion data.Interpretation/ConclusionThis study shows the potential of diffusion models for imputing missing modalities for large-scale studies of CBF variation with AD.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3