Generation of human appetite-regulating neurons and tanycytes from stem cells

Author:

Abay-Nørgaard Zehra,Müller Anika KORCID,Hänninen Erno,Rausch Dylan,Piilgaard Louise,Christensen Jens Bager,Peeters Sofie,Schörling Alrik L.,Salvador Alison,Nikulina Viktoriia,Li Yuan,Kajtez Janko,Pers Tune H,Kirkeby AgneteORCID

Abstract

SummaryThe balance between energy intake and expenditure is controlled by the hypothalamus, a small brain region characterised by high neuronal diversity. Specifically, the arcuate nucleus (ARC) and ventromedial hypothalamus (VMH) are key hypothalamic nuclei controlling appetite through behavioural response to circulating humoral signals. Yet, despite their physiological importance, the cellular and functional characteristics of this highly specialised neural region has been studied mainly in animals due to a lack of human models. Here, we fine-tuned the differentiation of human pluripotent stem cells toward the ARC and VMH hypothalamic nuclei and identified key subtype-specific progenitor markers of these subregions. We demonstrate that the timing for initiation and termination of bone morphogenetic protein (BMP) signalling is essential for controlling subregional specification of tuberal hypothalamic progenitors along the anterior-posterior axis, balancing VMH versus ARC fates. A particular population of SHH-/NKX2.1+/FGF10high/RAXhigh/TBX3highposterior tuberal progenitors was identified as the source for generation of ARC-associated agouti-related peptide (AGRP) neurons and tanycytes whilst anterior tuberal SHH+/NKX2.1+/FGF10low/RAXlow/TBX3lowprogenitors generated VMH phenotypes including NR5A1 neurons. Upon maturationin vitroand in xenografts, ARC-patterned progenitors gave rise to key appetite-regulating cell types including those producing AGRP, prepronociceptin (PNOC), growth hormone-releasing hormone (GHRH), thyrotropin-releasing hormone (TRH) and pro-opiomelanocortin (POMC), as well as tanycyte glial cells. Differentiated ARC cultures showed high transcriptomic similarity to the human ARC and displayed evidence of functionality by AGRP secretion and responsiveness to leptin and fibroblast growth factor 1 (FGF1). In summary, our work provides insights into the developmental lineages underlying hypothalamic subregional specification and enables access to highly characterised human ARC and VMH cultures, which will provide novel opportunities for investigating the cellular and molecular pathways triggered by obesity-associated genetic variants and weight-regulating stimuli.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3