Dynamical forces drive organ morphology changes during embryonic development

Author:

Manna Raj KumarORCID,Retzlaff Emma M.ORCID,Hinman Anna Maria,Lan Yiling,Abdel-Razek OsamaORCID,Bates Mike,Hehnly HeidiORCID,Amack Jeffrey D.ORCID,Manning M. LisaORCID

Abstract

AbstractOrgans and tissues must change shape in precise ways during embryonic development to execute their functions. Multiple mechanisms including biochemical signaling pathways and biophysical forces help drive these morphology changes, but it has been difficult to tease apart their contributions, especially from tissue-scale dynamic forces that are typically ignored. We use a combination of mathematical models andin vivoexperiments to study a simple organ in the zebrafish embryo called Kupffer’s vesicle. Modeling indicates that dynamic forces generated by tissue movements in the embryo produce shape changes in Kupffer’s vesicle that are observed during development. Laser ablations in the zebrafish embryo that alter these forces result in altered organ shapes matching model predictions. These results demonstrate that dynamic forces sculpt organ shape during embryo development.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3