Reversible disulfide bond crosslinks as tunable levers of phase separation in designer biomolecular condensates

Author:

Mondal Malay,Jankoski Penelope E.,Lee Landon D.,Dinakarapandian Daniel M.,Chiu Tzu-Ying,Swetman Windfield S.,Wu Hongwei,Paravastu Anant K.,Clemons Tristan D.,Rangachari Vijayaraghavan

Abstract

ABSTRACTBiomolecular condensates (BCs) are membraneless hubs enriched in proteins and nucleic acids that have become important players in many cellular functions. Uncovering the sequence determinants of proteins for phase separation is important in understanding the biophysical and biochemical properties of BCs. Despite significant discoveries in the last decade, the role of cysteine residues in BC formation and dissolution has remained unknown. Here, to determine the involvement of disulfide crosslinks and their redox sensitivity in BCs, we designed a ‘stickers and spacers’ model of phase-separating peptides interspersed with cysteines. Through biophysical investigations, we learned that cysteines promote liquid-liquid phase separation in oxidizing conditions and perpetuate liquid condensates through disulfide crosslinks, which can be reversibly tuned with redox chemistry. By varying the composition of cysteines, subtle but distinct changes in the viscoelastic behavior of the condensates were observed. Empirically, we conclude that cysteines are neither stickers nor spacers but function as covalent nodes to lower the effective concentrations for sticker interactions and inhibit system-spanning percolation networks. Together, we unmask the role of cysteines in protein phase behavior and the potential to develop tunable, redox-sensitive viscoelastic materials.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3