Unveiling Chemotherapy’s Impact on Lung Cancer through Single-Cell Transcriptomics

Author:

Sayad SaedORCID,Hiatt MarkORCID,Mustafa HazemORCID

Abstract

AbstractBackgroundLung adenocarcinoma (LUAD) is the most common subtype of non-small cell lung cancer (NSCLC) and frequently affects non-smokers, especially women. It is characterized by a complex genetic profile and interactions with its microenvironment, which contribute to its aggressive and adaptable nature. Early symptoms are often subtle, leading to late diagnoses. Treatment approaches have advanced with targeted therapies and immunotherapy supplementing traditional chemotherapy and radiation. Despite these advancements, the prognosis remains variable, highlighting the need for continued research into new treatment strategies to improve outcomes.MethodIn this study, we employed Single-cell RNA Sequencing (scRNA-seq) to comprehensively analyze the impact of chemotherapy on lung adenocarcinoma at the individual cell level. By comparing before and after treatment samples, we assessed the differential expression of genes and pathways, revealing insights into how different cell types within the tumour respond to chemotherapy. This approach enabled us to pinpoint specific mechanisms of drug resistance and highlight potential therapeutic targets for overcoming these challenges.ResultsOur analysis uncovered substantial changes in gene expression between primary tumour cells and metastatic cells following chemotherapy. Notably, we observed that 45 pathways were shared between the top 50 upregulated pathways in the primary tumour and the top 50 downregulated pathways in the metastatic tumour post-chemotherapy. Conversely, there was no overlap between the top 50 downregulated pathways in the primary tumour and the top 50 upregulated pathways in the metastatic tumour after chemotherapy. This suggests that chemotherapy effectively downregulated the major upregulated pathways but did not upregulate the key downregulated pathways in metastatic tumours.ConclusionsIntegrating single-cell transcriptomics into LUAD research offers detailed insights into the tumour’s response to chemotherapy and its interaction with the immune system. This approach enhances our understanding of LUAD and aids in developing targeted and effective treatments. Based on our analysis, we hypothesize that combining chemotherapy with drugs designed to upregulate the downregulated pathways in primary tumour cells could significantly enhance treatment efficacy and improve patient outcomes.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3