Abstract
AbstractPopulation genomic analyses rely on an accurate and unbiased characterization of the genetic setup of the studied population. For short-read, high-throughput sequencing data, mapping sequencing reads to a linear reference genome can bias population genetic inference due to mismatches in reads carrying non-reference alleles. In this study, we investigate the impact of mapping bias on allele frequency estimates from pseudohaploid data, commonly used in ultra-low coverage ancient DNA sequencing. To mitigate mapping bias, we propose an empirical adjustment to genotype likelihoods. Simulating ancient DNA data with realistic post-mortem damage, we compare widely used methods for estimating ancestry proportions under different scenarios, including reference genome selection, population divergence, and sequencing depth. Our findings reveal that mapping bias can lead to differences in estimated admixture proportion of up to 4% depending on the reference population. However, the choice of method has a much stronger impact, with some methods showing differences of 10%. qpAdm appears to perform best at estimating simulated ancestry proportions, but it is sensitive to mapping bias and its applicability may vary across species due to its requirement for additional populations beyond the sources and target population. Our adjusted genotype likelihood approach largely mitigates the effect of mapping bias on genome-wide ancestry estimates from genotype likelihood-based tools. However, it cannot account for the bias introduced by the method itself or the noise in individual site allele frequency estimates due to low sequencing depth. Overall, our study provides valuable insights for obtaining precise estimates of allele frequencies and ancestry proportions in empirical studies.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献