Abstract
AbstractIn order to advance our understanding of precancers in the pancreas, 69 pancreatic intraductal papillary neoplasms (IPNs), including 64 intraductal papillary mucinous neoplasms (IPMNs) and 5 intraductal oncocytic papillary neoplasms (IOPNs), 32 pancreatic cyst fluid samples, 104 invasive pancreatic ductal adenocarcinomas (PDACs), 43 normal adjacent tissues (NATs), and 76 macro-dissected normal pancreatic ducts (NDs) were analyzed by mass spectrometry. A total of 10,246 proteins and 22,284 glycopeptides were identified in all tissue samples, and 756 proteins with more than 1.5-fold increase in abundance in IPMNs relative to NDs were identified, 45% of which were also identified in cyst fluids. The over-expression of selected proteins was validated by immunolabeling. Proteins and glycoproteins overexpressed in IPMNs included those involved in glycan biosynthesis and the immune system. In addition, multiomics clustering identified two subtypes of IPMNs. This study provides a foundation for understanding tumor progression and targets for earlier detection and therapies.SignificanceThis multilevel characterization of intraductal papillary neoplasms of the pancreas provides a foundation for understanding the changes in protein and glycoprotein expression during the progression from normal duct to intraductal papillary neoplasm, and to invasive pancreatic carcinoma, providing a foundation for informed approaches to earlier detection and treatment.
Publisher
Cold Spring Harbor Laboratory