stormTB: A web-based simulator of a murine minimal-PBPK model for anti-tuberculosis treatments

Author:

Visintainer RobertoORCID,Fochesato Anna,Boaretti DanieleORCID,Giampiccolo StefanoORCID,Watson Shayne,Levi Micha,Reali FedericoORCID,Marchetti LucaORCID

Abstract

AbstractIntroductionTuberculosis (TB) poses a significant threat to global health, with millions of new infections and approximately one million deaths annually. Various modeling efforts have emerged, offering tailored data-driven and physiologically-based solutions for novel and historical compounds. However, this diverse modeling panorama may lack consistency, limiting result comparability. Drug-specific models are often tied to commercial software and developed on various platforms and languages, potentially hindering access and complicating the comparison of different compounds.MethodsThis work introduces stormTB: SimulaTOr of a muRine Minimal-pbpk model for anti-TB drugs. It is a web-based interface for our minimal physiologically based pharmacokinetic (mPBPK) platform, designed to simulate custom treatment scenarios for tuberculosis in murine models. The app facilitates visual comparisons of pharmacokinetic profiles, aiding in assessing drug-dose combinations.ResultsThe mPBPK model, supporting 11 anti-TB drugs, offers a unified perspective, overcoming the potential inconsistencies arising from diverse modeling efforts. The app, publicly accessible, provides a user-friendly environment for researchers to conduct what-if analyses and contribute to collective TB eradication efforts. The tool generates comprehensive visualizations of drug concentration profiles and pharmacokinetic/pharmacodynamic indices for TB-relevant tissues, empowering researchers in the quest for more effective TB treatments. stormTB is freely available at the link:https://apps.cosbi.eu/stormTB.

Publisher

Cold Spring Harbor Laboratory

Reference33 articles.

1. Attali, D. (2021). shinyjs: Easily Improve the User Experience of Your Shiny Apps in Seconds. https://CRAN.R-project.org/package=shinyjs

2. Bailey, E. (2022). shinyBS: Twitter Bootstrap Components for Shiny. https://CRAN.R-project.org/package=shinyBS

3. Chang, W. , Cheng, J. , Allaire, J. J. , Sievert, C. , Schloerke, B. , Xie, Y. , Allen, J. , McPherson, J. , Dipert, A. , & Borges, B. (2024). shiny: Web Application Framework for R. https://shiny.posit.co/

4. An Interactive Generic Physiologically Based Pharmacokinetic (igPBPK) Modeling Platform to Predict Drug Withdrawal Intervals in Cattle and Swine: A Case Study on Flunixin, Florfenicol, and Penicillin G

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3